






Report No. 4396 Bolt Beranek and Newman Inc.

QUARTERLY TECHNICAL REPORT NO. 5

Contents

1. Introduction .. .. .. .. .. .. .. .. .. .... .

2. Object Management System . . . o o . . . . .. . . .. 2
2.1 Use of the Object Management System . . . . o . . o . . 3
2.2 Structure and System Integration . o . . . . . . . . . 5

3. System Power Supply . ....... . . . . . . . . .. 11

" 4 ' _ _ _ _ __ _ _



Report No. 4396 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 5, describes aspects

of our work performed under Contract No. MDA903-78-C-0356 during

the period from 1 August 1979 to 31 October 1979. This is the

fifth in a series of Quarterly Technical Reports on the design of

a packet speech concentrator, the Voice Funnel.

This report focuses on two aspects of the system: the

development of the Object Management System, a part of our

software effort, and the development of a suitable power supply

for a reliable hardware system. In the following sections we

present some of the results of this work.

Ii



Report No. 4396 Bolt Beranek and Newman Inc.

2. Object Management System

The purpose of the Object Management System is to manage

access to system resources (such as memory segments, I/O buffers,

and processes). It provides an environment in which objects are

given types, names, and protection to aid the programmer, and

makes the virtual-to-physical memory mapping largely invisible.

The Object Management System brings together a variety of

services which most operating systems provide in a less cohesive

manner. Many operating systems include a file system for

secondary storage organization and access. The file system often

includes facilities for naming and sharing files, and for keeping

type information about them so that access can be provided in a

controlled way. Similar services for objects in primary memory

are usually less elaborate, but usually include memory protection

and any necessary memory mapping.

The Voice Funnel does not need secondary storage and

therefore will not have the capabilities of a file system. The

Object Management System provides some of the file system

features for "objects" which reside in primary memory. In

addition, memory allocation, memory protection, and controlled

sharing are provided through the Object Management System.

I

-2-
'I



Report No. 4396 Bolt Beranek and Newman Inc.

2.1 Use of the Object Management System

The user views the system as a collection of resources,

called objects, which the Object Management System manipulates on

his behalf and under his control. Examples of important object

types are the user's process and memory segments. The user

identifies objects by OIDs (Object IDentifiers), which are

location-independent tags assigned by the Object Management

System and through which the Object Management System can locate

the object. For convenience, a user may associate a character

string as the name for the object, just as he would name a file

in a conventional file system. An object can be located either

from its OID or, more slowly, from its name.

An OID is a 32-bit quantity, consisting of three fields.

Two of the fields, an 8-bit processor number and a 16-bit index,

are used to locate the Object Attribute Block (OAB) for the

object. Each processor node contains an OAB table, and the index

selects an OAB from this table. The third field is an 8-bit

check field which is matched against the corresponding field in

the OAB at the processor node and offset selected by the OID.

Over time an OAB may be used for a succession of distinct

objects. Each time an object is destroyed, its OAB check field

is incremented, so that a new object using the OAB will have a

distinct value in the check field. Since there are 256 possible

values for the check field, the probability of an OID for a

-3-



Report No. 4396 3olt Beranek and Newman Inc.

deleted object matching the check field is quite small. We

expect this to be a powerful debugging facility.

The OAB is the minimum system structure associated with an

object. It consists of a collection of fields describing the

object. Included in the OAB are the check field, type of object

field, and pointers to the object's representation in memory and

to the long name of the object. Note that either of these

pointers may be null. Other fields of the OAB are used for

object status, protection, and debugging information, as well as

for highly protected type specific information.

A user wishing to use an object must first obtain permission

from the Object Management System. If, for instance, he wishes

to write an I/O buffer, he must pass its OID to a routine which

places it in his address space; the user either specifies the

virtual address he wishes it to have in his environment, or if he

fails to specify the address, receives the virtual address back

from the Object Management System.

The user must also specify the access mode (e.g., user

writable) required for his usage. This access mode must be a

subset of the access which he is permitted for the object, or his

request will be rejected. If the user attempts to access it in a

mode other than what he has requested, the hardware of the Memory

Management System blocks the access. The user may request those

access rights which he expects to use, rather than the full

-4- I.1i



Report No. 4396 Bolt Beranek and Newman Inc.

access to which he may be entitled. By this means unintended

object references will often be recognized by the Object

Management System as errors, making it easier to find software

design and coding errors.

When the user is through using the object, he can ask the

Object Management System to remove the object from his address

space, and then may no longer reference the object. Of course,

this does not prejudice his future use of the object in the same

or a different mode. In this way, the user may alter the access

permission to an object over time in order to match the

protection to his requirements on a moment-by-moment basis.

The above description is oriented to objects which are

regions of memory (logical segments or buffers), for which the

hardware is capable of providing the appropriate protection.

More complex objects, such as processes, may not be directly

readable or writable by the user at all. For these objects, the

object system will be augmented with routines which manipulate

the objects on the user's behalf. The same protection mechanism

will be used to control what operations these software routines

will permit on the object.

2.2 Structure and System Integration

The services of the Object Management System enhance the

structure and protection of the operating system. We would

-5-



Report No. 4396 Bolt Beranek and t'ewman Inc.

therefore like to keep the Object Management System at a

sufficiently low level to permit the remainder of the operating

system to treat it as an available resource. However, the Object

Management System also utilizes services from other parts of the

operating system, and therefore we might want to construct it

above the remainder of the operating system.

In order to provide both the operating system and Object

Management System with the services of the other in a reasonably

efficient manner, we are constructing the Object Management

System in layers. Primitive functions, such as physical memory

allocation, lie below much of the rest of the operating system,

while higher level functions, such as virtual memory allocation,

are found in a much higher layer, above much of the rest of the

operating system. Thus the various layers of the operating

system see different degrees of sophistication in the Object

Management System. Indeed, the higher layers of the Object

Management System will call the same lower level Object

Management System routines as do other parts of the operating

system. This provides operating system services to the Object

Management System while it provides Object Management System

services to the rest of the operating system.

The Object Management System has four layers. The lowest

layer, the Physical Memory Manager, is a memory allocator based u
on the physical machine characteristics. The next layer, the I

• -6-

iiII
,, _ __ __ _ __ _i__ _i_



Report No. 4396 Bolt Beranek and Newman Inc.

Central Object Utility, is the heart of the Object Management

System. It provides type-independent services on objects, and

insulates the layers above it from the locality properties of the

physical memory system of the Butterfly Multiprocessor. Above

the Central Object Utility lies the Memory Mapping Manager. It

maintains the mapping registers on the Butterfly Multiprocessor

to support the Virtual Address space. The final layer of the

Object Management System provides the services particular to

specific types of objects, and provides an interface to the lower

level functions.

The Physical Memory Manager is the lowest layer of the

Object Management System. It contains a physical memory

allocator which allocates memory in discrete sized blocks which

correspond to multiples of the page size of the Butterfly

Multiprocessor, and which can be easily protected by the Memory

Manager hardware. This allocator can only allocate memory in a

specified processor node; that is, each request for memory

allocation must specify a processor node from which the memory is

to be allocated, and the allocation will fail if there is not

enough memory in the processor node specified.

A second allocator is provided which obtains blocks of

memory from the main allocator and subdivides the memory to

provide memory in arbitrarily small increments. However, these

smaller allocations cannot be individually protected by the

Object Management System.

-7-

_ _ _ __ _ __ _
9 - ____ ____ ___ ____ ___



Report No. 4396 Bolt Beranek and Newman Inc.

The second level of the Object Management System is the

Central Object Utility. It consists of a large number of

procedures which perform all the type-independent operations on

objects, such as creation, destruction, naming, locating and

accessing, and fetching and altering the parametric descriptors

of objects. It calls on the Physical Memory Manager to acquire

and release memory for both the objects themselves and for its

own needs.

In order to insulate higher layers of software from locality

considerations of the physical memory system, the Central Object

Utility manipulates location-independent object identifiers and

names, and operates on data structures across nodes of the

Butterfly Multiprocessor. Since all programs above the layer of

the Central Object Utility use these identifiers to reference

objects, programs in higher layers are effectively insulated from

location-dependent features of the hardware. However, the user

may occasionally want to specify the location of an object, since

the time required to access the object depends on its location.

For this reason, the Central Object Utility permits the user to

control the processor node on which an object resides.

The Memory Mapping Manager is the third layer of the Object

Management System. It contains the routines which maintain the

memory maps for processes. Each entry of the memory map contains

the physical address and protection attributes for accessing a

-8-



Report No. 4396 Bolt Beranek and Newman Inc.

single object from a given process. The Memory Mapping Manager

thus defines the virtual address space for all of the system

above it.

The top level of the Object Management System is the set of

type-specific object managers, the most important of which is the

Virtual Segment Manager. The Virtual Segment Manager provides

the user with virtual memory segments, which he may identify by

their segment numbers.

Other objects will be supported by specific type mangagers,

including processes, buffers, and dual queues. The set of type

managers is designed to be expandable, and more type managers

will be added as required. Each object manager will support

calls to create, destroy, and modify objects of the appropriate

type. In addition, there must be support either for mapping the

object into the user's virtual space or, alternatively, to read

and write the object directly. For example, the buffer manager

will allow the user to map in the data portion of the I/O

buffers, but will employ service calls to modify the buffer

control information, so that it may check the validity of the

control information.

Creating and destroying objects are expected to be

relatively expensive operations for objects whose creation

implies allocation of memory. For these objects, it may well be

appropriate to keep the objects on free lists, and recycle them.

[ -9-



Report No. 4396 Bolt Beranek and Newman Inc.

For example, I/O buffers will almost certainly be maintained as

objects between uses, although creating and destroying them as

needed might be more straightforward. If necessary, support for

these free lists could be built into the type managers, making

the activity invisible to the user program.

W
I
I

-I0

,Ii



Report No. 4396 Bolt Beranek and Newman Inc.

3. System Power Supply

As the computer industry knows well, the energy supply of a

system is often surprisingly complex and expensive. Trouble

comes in almost every form. For example, the source of power is

unreliable, noisy, mechanically awkward, and lethal. Refining

the power so that it may be used with integrated circuits

requires a discipline different from logic design: the

components are prone to various forms of breakdown and fatigue,

and the mechanical and magnetic considerations are prominent.

Finally, the power dissipated in the logic circuits and the

supply itself must be removed from the machine.

In the Butterfly Multiprocessor we plan to design and build

our own supplies and mount them on the same cards as the logic.

The power supply structure we have in mind is a simple switching

supply based on available regulator ICs and a MOSFET power

transistor. Some of the reasons we have come to this choice

include the following:

- Reliability - If a single power supply supplies more than
one system component, the system is vulnerable to failure in
that component. If we try to duplex centralized power
supplies, the simple diode-coupling method being used now
will not work because of variations in the voltage drop
across the diode. This leads to on-board regulators after
the diode.

- Modularity - By distributing the power regulation throughout
the system, and relaxing the requirements for raw power
distribution, we have vastly improved the modularity of the
system. Modularity is a problem because it is often
necessary to couple the power supply to only a few active
components. Unfortunately it is then necessary to configure

iI -_11-

:I i|



Report No. 4396 Bolt Beranek and Newman Inc.

that supply for the worst case power load. In the current
configuration, the supply always matches the load. The
astute reader will have noticed that the source of raw power
is still centralized and must be configured for worst case;
however, the cost of raw power is much less than the cost of
regulated power and the wide input supply tolerances have
eased the problems of configuring the raw power supply.

- Efficiency - The on-board supplies can be very efficient
because they are switching supplies and because they are
designed for the application at hand.

- Accuracy - Power supplies are often furnished with remote
sensing connections to permit the supply to compensate for
the voltage drop in the distribution system. Since the
regulator is being placed on the card, these effects, as
well as the effect of connector imperfections, will be much
less important. The regulator being designed should be very
good at supplying high quality DC to the circuitry.

- Current - By placing the regulator on the card, the amount
of current supplied by each power supply circuit is small,
making the design easier and more certain. By distributing
the power at a higher voltage, the current flow in the
distribution circuit can be reduced, and the size of power
storage capacitors in the raw power supply can be reduced.

- Multiple Voltages - Since the supply is distributed, any
multiple voltages can be supplied as required.

- Battery Backup - The high input voltage tolerance of the
on-card regulator will make battery switch-over very simple.
On-card regulation also is well suited to supplying backup
power only to those parts of the machine which require power
in a "holdup" configuration. For example, we can provide
battery power to only the memory cards, since they have
their own supply.

The power system is illustrated in Figure 1. As can be

seen, the power supply is distributed throughout the machine in

the form of a regulator on each card supplied by diode-coupled

raw voltage at about 28 VDC. Because of diode-coupling, the

source of raw DC can be implemented in a redundant manner, and

indeed, if a battery holdup were required, it could be coupled in

as well.

-12- 1



Report No. 4396 Bolt Beranek and Newman Inc.

ON-BOARD 5 VC
SWITCHING A

110VAC REGULATOR OTHER

ON-BOARD * 5 Voc

SWITCHING 5O

REGULATOR OTHER110 VAC

TO PROCESSOR OR 1/0
29 VDC OR SWITCH BOARDS

Figur 1 Pwer istrbtion Ste

STCHING F-
REGULATOR t.-_OTHER

/VOLTAGES

BATTrERY

. ON410ARD + 5 VDC
~SWITCHING

REGULATOR |_ OTH'ER
0, |VOLTAGE

MEMORY BOARDS

Figure 1 Power Distribution System

Supplying the raw power at 28 volts instead of 5 volts

reduces the current flow in the power distribution system by a

factor of 5 and reduces the losses in the diode coupling

similarly. Since the on-board regulators are switching

regulators, they can be designed to accept a wide variation in

- 13 -



Report No. 4396 Bolt Beranek and Newman Inc.

input supply voltage. This is particularly important when a

simple battery switch-over mechanism such as diode coupling is

desired.

PWRS UC INPT PO E T 5 VOLTS

BATTERY- STEERING 
C

FILTERVOLTAGES

PUS MOTH OVERVOLTAGE
MODULATOR PR°TECT°Rf

Figure 2 Block Diagram of On-Board Regulator

Each on-card regulator has the same set of functional blocks

(as seen in Figure 2) although several of the blocks may be

implemented with different components because of individual board

voltage, current, and ripple requirements. The functional blocks

are:

- Power Source Steering - This block consists of two or three
diodes to allow diode ORing of the two separate power buses
and, where battery holdup is required, the battery power
bus. A fuse and inrush current limiter are also provided to
protect the power sources from a faulty regulator.

-14 1
3



Report No. 4396 Bolt Beranek and Newman Inc.

- Input Filter - A T-section low pass filter reduces coupling
of the high frequency (150 khz) current pulses into the
power source.

- Power Switch - A power MOSFET switch is used to simplify the
drive requirements and allow efficient high frequency
operation.

- Transformer - The transformer can generate multiple output
voltages of either polarity.

- Output Filter - The low pass PI-section output filter
attenuates the ripple to acceptable limits.

- Pulse Width Modulator - An integrated circuit together with
a few discrete components provides all the control circuitry
for pulse width modulating the power switch to achieve
regulation of the main output voltage. The chip contains
voltage reference, error amplifier, oscillator, pulse width
modulator, and shut-down circuitry.

- Status Monitoring - Comparators check that the power bus
voltage is greater than the minimum voltage needed, that the
output current is less than the overcurrent limit, and that
the output voltages are within their correct tolerances.

- Overvoltage Protector - A commercial overvoltage protector
on the main +5 supply assures that a catastrophic power
supply failure will not damage the ICs.

Table 1 details the parts count, cost, board area

percentage, output power, voltages required, and efficiency of

the four on-board regulators thus far designed. The design

effort for each power supply has averaged about 2 weeks including

design, parts selection, prototype performance validation, and PC

board layout and checking. The ripple and voltage regulation of

the prototypes have basically conformed to the design equations.

Thermal management has been very straightforward because of the

high efficiency and modest power requirements of a single board.



Report No. 4396 Bolt Beranek and Newman Inc.

I/O Switch Memory Processor
Board Node Board Node

Board Board

Number of non-mechanical parts 57 66 65 62

Parts Cost ($) 52 59 59 54

Board Space Used (sq. in.) 30 24 22 24

Fraction of total Board Space 15% 19% 20% 11%

+5.0 volt current (amps) 6.5 1.8 1.0 9.3

+12.0 volt current (amps) 0.0 0.0 0.6 0.0

-2.7 volt current (amps) 0.0 1.2 0.0 0.0

-5.0 volt current (amps) 0.0 0.0 0.02 0.0

-5.2 volt current (amps) 0.2 0.6 0.0 0.5

Efficiency at 24 volts input 75% 72% 77% 76%

Battery backup no no yes no

Input power (watts) 45 18 16 65

Table 1 Summary of Regulator Characteristics

One issue of concern is power supply reliability. If more

manpower and time were available, accelerated life testing could

give information on any failure modes and component failure

rates. Protection in the form of overvoltage and overcurrent

detection with fast blow fuses will hopefully prevent regulator

failures from propagating to other boards or destroying ICs.

Due to the high operating frequency and very fast switching

transitions, Radio Frequency Interference could be a problem.

-16I



Report No. 4396 Bolt Beranek and Neman Inc.

The layout of each regulator is such that a conductive cover can

be placed over all the regulator components. It is hoped that

the regulator cover in conjunction with the rack enclosure will

attenuate the interference to an acceptable level.

I
J

1 -17 -

I V



Report No. 4396 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Advanced Research Projects Agency

Dr. Robert E. Kahn (2)

Defense Supplv Service -- Washington

Jane D. Hensley (1)

Defense Documentation Center (12)

Bolt Beranek and Newman Inc.

Library

Library, Canoga Park Office

R. Bressler

R. Brooks

P. Carvey

P. Castleman

F. Heart

M. Hoffman

M. Kraley

W. Mann

J. Pershing

R. Rettberg

E. Starr

E. Wolf

I

-18

kl-l -- on--I'


